skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xiao, Mengying"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We analyze and test a simple-to-implement two-step iteration for the incompressible Navier-Stokes equations that consists of first applying the Picard iteration and then applying the Newton iteration to the Picard output. We prove that this composition of Picard and Newton converges quadratically, and our analysis (which covers both the unique solution and non-unique solution cases) also suggests that this solver has a larger convergence basin than usual Newton because of the improved stability properties of Picard-Newton over Newton. Numerical tests show that Picard-Newton converges more reliably for higher Reynolds numbers and worse initial conditions than Picard and Newton iterations. We also consider enhancing the Picard step with Anderson acceleration (AA), and find that the AAPicard-Newton iteration has even better convergence properties on several benchmark test problems. 
    more » « less
  2. The incremental Picard Yosida (IPY) method has recently been developed as an iteration for nonlinear saddle point problems that is as effective as Picard but more efficient. By combining ideas from algebraic splitting of linear saddle point solvers with incremental Picard‐type iterations and grad‐div stabilization, IPY improves on the standard Picard method by allowing for easier linear solves at each iteration—but without creating more total nonlinear iterations compared to Picard. This paper extends the IPY methodology by studying it together with Anderson acceleration (AA). We prove that IPY for Navier–Stokes and regularized Bingham fits the recently developed analysis framework for AA, which implies that AA improves the linear convergence rate of IPY by scaling the rate with the gain of the AA optimization problem. Numerical tests illustrate a significant improvement in convergence behavior of IPY methods from AA, for both Navier–Stokes and regularized Bingham. 
    more » « less
  3. Abstract This paper develops an efficient and robust solution technique for the steady Boussinesq model of non-isothermal flow using Anderson acceleration applied to a Picard iteration. After analyzing the fixed point operator associated with the nonlinear iteration to prove that certain stability and regularity properties hold, we apply the authors’ recently constructed theory for Anderson acceleration, which yields a convergence result for the Anderson accelerated Picard iteration for the Boussinesq system. The result shows that the leading term in the residual is improved by the gain in the optimization problem, but at the cost of additional higher order terms that can be significant when the residual is large. We perform numerical tests that illustrate the theory, and show that a 2-stage choice of Anderson depth can be advantageous. We also consider Anderson acceleration applied to the Newton iteration for the Boussinesq equations, and observe that the acceleration allows the Newton iteration to converge for significantly higher Rayleigh numbers that it could without acceleration, even with a standard line search. 
    more » « less